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USE OF PLANETARY OBLATENESS FOR PARKING ORBIT
OPERATIONS FOR INTERPLANETARY MISSIONS

By Joseph R. Thibodeau III

SUMMARY

A technique for parking orbit operations has been developed to aid
stay time analysis of the orbital phases of a planetary reconnaissance
or landing mission. This technique takes advantage of a planet's
gravitational perturbations to rotate the parking orbit, thereby
eliminating the need for maneuvers to change the orbit plane, line of
apsides, or orbital eccentricity. A FORTRAN computer program employing
this technique was used to find parking orbits which require no maneuvers
for orbital realignment. A preliminary parking orbit and stay time
analysis is presented for a 1975 Mars orbital mission to illustrate the
feasibility of this technique.

INTRODUCTION

During planetary reconnaissance or landing missions, parking orbits
satisfying mission objectives must be established about the destination
planet. Often, these stopover missions require large orbital plane
changes and line of apsides rotations while the spacecraft is in the
parking orbit. Rotation of the parking orbit becomes necessary because
of two dynamical phenomena -~ the orientation and motion of the hyperbolic
departure asymptote and the motion of the parking orbit due to the
asphericity of the planet's gravitational field.

Sophisticated operational techniques have been developed to reorient
the parking orbit. Several of these techniques are investigated in
reference 1. Each of these techniques requires the spacecraft to
accurately execute several consecutive maneuvers to reorient the parking
orbit. Thus orbital missions are complex, and heavy demands are placed
on the spacecraft guidance, navigation, and control systems. It would
be highly advantageous to eliminate the need for these maneuvers.

It may be possible to design orbital missions which require no
parking orbit maneuvers. For these missions, the mechanism for parking
orbit rotation would %be the orbital perturbations due to the asphericity
of the planet's gravitational field.



This paper develops a technique in which these perturbations con-
tinually rotate the orbital plane and line of apsides while the space-
craft is in the parking orbit about the planet. The goal of this
technique is to consider only those operations inside the planet's sphere
of influence and to freely choose the characteristics of the parking
orbit and entry and exit hyperbolas so that they match the interplanetary
trajectory at the planet's sphere of influence and require no parking
orbit maneuvers except the orbital deboost and injection burns.

SYMBOLS
a semimajor axis
e orbital eccentricity
i orbital incliination with respect to

the planet's equatorial plane

J2 second zconal harmonic of destination
planet

n mean motion of the parking orbit

R equatorial radius of destination
planet

rp radius of periapsis

v, excess hyperbolic velocity of the
interplanetary trajectory

o planetocentric right ascension

8 planetocentric declination

AT stay time in parking orbit about

destination planet

0 angle between periapsis and excess
hyperbolic velocity vector

H gravitational parameter of destination
planet

o auxiliary variable = sin~! (tan &§/tan i)



0 unit vector in the direction of the
ascending node

és nodal regression rate dus to planetary
oblateness

ér normalized rotation rate

wp argument of periapsis

&s periapsis precession rate due to

planetary cblateness

Subscripts
A approach trajectory
D departure trajectory
P periapsis
Q ascending node
w argument of periapsis

TECHNIQUE FOR OREITAL OPERATIONS

The sequence of maneuvers for this technigue is illustrated in
figure 1 and outlined as follows:

1. The spacecraft deboosts into parking orbit at periapsis of the
arrival hyperbola.

a. The parking orbit and the arrival hyperbola are coplanar.
b. The periapsis position vectors of the parking orbit and
arrival hyperbola are identical. ’

2. The spacecraft waits in the parking orbit until the time of
departure. During this time, the orbital plane and line of apsides
will be in motion due to asphericity of the planet's gravitational
field. Also, the position of hyperbolic departure asymptote will vary
with time in inertial space due to planetary dynamics.



ESCAPE HYPERBOLA

/—PARKING ORBIT AT
TIME OF DEPARTURE
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TIME OF ARRIVAL

ARRIVAL HYPERBOLA

Figure 1. - Geometry of the parking orbit at the time of arrival and departure,



3. At departure, injection onto an escape hyperbola occurs at
periapsis of the elliptical parking orbit.

a. The parking orbit and the escape hyperbola are coplanar.
b. The periapsis position vectors of the parking orbit and
escape hyperbola are identical.

From this outline it is evident that to determine the parking orbit,
both the approach and dejarture trajectories as well as the parking
orbit must be considered. The problem is one of determining the orientation
of the approach and departure hyperbclas so they match the interplanetary
trajectory at the planet's sphere of influence. Likewise, the orientation
of the parking orbit must be chosen so that it initially matches the

arrival hyperbola, yet will regress during the planetary stay time to
match the escape hyperbola.

The boundary conditions for the maneuver sequence are defined by
four quantities which are the necessary problem input data:

1. periapsis altitude

2. planetary stay time

3. the V_ vector of the interplanetary approach trajectory

4, the V_ vector of the interplanetary departure trajectory.

These data are calculated by an independent interplanetary tra-
jectory program (ref. 2). The interplanetary trajectory is assumed

to be known, and only those operations inside the planet's sphere of
influence are considered.

DERIVATION

Given periapsis altitude, the following parameters define the
parking orbit size, shape, and orientation:

1. inclination

2. eccentricity

[9))

longitude of the ascending node

Py

argument of periapsis.



This derivation shows how these parameters are found for regressing
parking orbits which require no maneuvers except the orbital deboost
and injection burns. The orbital parameters are referenced to the
time of periapsis passage of the arrival hyperbola.

The determination of the orbital parameters invelves two distinct
phases. The first phase is a search for the orbital inclination,
ascending node, and periapsis vector. The orbital inclinagtion is found
by meking it the independent search variable. By sweeping through the
range of possible inclinations, the node and periapsis vectors and the
orbital regression rates can be calculated for each inclination. The
proper orbital parameters then are found by interpolation. The second
phase finds the orbital eccentricity. The eccentricity is found by
using the Newton-Raphson method.

Determination of Orbital Inclination

The V_ vectors and the periapsis altitude define the characteristics
of the app;oach and departure hyperbolas. They also define limits on
the ineclination of the approach and departure tragectorles as well as
the parking orbit. They do not define the plane of the trajectories,
however. Two additional vectors are needed to determine the plane of
the entry hyperbola and the orientation of the hyperbola within the
plane. These vectors are the unit vectors in the direction of the
ascending node and periapsis. Since orbital orientation maneuvers are
avoided, these vectors are the same for the parking orbit and the
arrival hyperbola at the time of periapsis passage on the arrival
hyperbola. They can be calculated once the orbital inclination is found.

The node and periarsis position vectors are double-valued functions
of inclination. This can be seen in figure 2 which shows there are
two orbital planes containing the V_ vector for every ineclination.
Thus, for each inclination, two nodes and two periapsis vectors must
be found for each v, vector

The longitude of the ascending node (ag) is determined from the
formula:



EQUATORIAL PLANE

NOTE: THERE ARE TWO ORBITS CONTAINING THE TARGET
VECTOR FOR EVERY INCLINATION,

Figure 2. - Geometry of trajectory planes.
(Taken from Reference 3)



where

_ sin—l tan §
o= fan 1

and o and ¢ are the right ascension and declination of the V°° vector.
o is the longitude of the ascending node closest to the V_ vector as
1
shown in figure 2. Likewise, aQ is the longitude of the node furthest
2

from the Voo vector.

The semimajor axis (a) of the approach hyperbola is determined
from the vis viva equation

a = . 5 (2)
ol

When the periapsis radius is specified, the eccentricity of the
entry hyperbola can be found by

r
e = £ 4+ 1 (3)
a

The angle between the arrival V_ vector and the periapsis of the
arrival hyperbola (6) can now be found by

8 = cos_1(§> (4)

where e 1is the eccentricity of the arrival hyperbola.

The argument of periapsis (wp) for the arrival hyperbola is found

from the following equation
- “1(0 « v
w, = cos (Q v.,) -¢ (5)

At the time of periapsis passage, the argument of periapsis of
the parking orbit is the same as for the arrival hyperbola.

The same equations are used to find the node and periapsis vectors



at the time of injection onto the escape hyperbola with one exception:

8 = cos ! (%) (6)

where e 1is the eccentricity of the departure hyperbola.

Suppose the right ascension of the ascending node, Qo and the

argument of periapsis, wp, have been calculated for the node closest

to the V_ vector for both the arrival and departure hyperbolas. Again

considering figure 1, during the planet stay time QA must move to

QD’ and r must move to r_ .
A Pp

The angular distance the node must travel is

pa, =a, -oa, =V ,V_ ,r,i)
Ly 0y A p P (1)
where the subscripts A and D indicate the arrival and departure

hyperbolas, respectively.

Likewise, the angular distance the periapsis vector (rp) must

travel is
Vv ,r_ ,1i)

o ? "o

Pp Py A “p P (8)

The speed of rotation of the node (és) and periapsis (&S) due to

secular variation (J2) is given in reference L as

. -3nJ2R2
Q = ——————cos i (9)

S 2a2(l - e2)2
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Since the fastest rates are experienced vy circular orbits, these
equations are solved by setting e = O.

The time for the node of a circular orbit to traverse Aa. is

Q
Ao
f
AT, = T (11)
Q2 e=0
S
and the time for the periapsis to traverse Awp is
Aw
ATw = -
Ys  le=o (12)

If the stay time in the parking orbit is designated by AT, the
problem is to obtain the inclination and eccentricity of the parking
orbit such that

AT = AT = AT
Q w (13)

This condition is obtained in two steps.

1. Find a parking orbit inclination that will make ATQ equal to
AT .

2. Adjust the parking orbit eccentricity to make AT . and ATw

Q
equal to the plaret stay time, AT.

A simple interpolation scheme lends itself to finding the orbital

inclination for which ATQ equals ATw’ If A‘I‘Q and ATw are calculated at

10° increments through the interval of possible inclinations, the
ratio ATQ/ATw can be tabulated with inclination. Equality of AT. and

: 9]
ATw is indicated by a ratioc of unity. Thus the table can be scanned to
find a ratio near 1, and the inclination can be found by interpolation.
The interpolated value of inclination can now be used to calculate
the ATQ and ATw for a circular orbit. If necessary, the above procedure
can be repeated using a smaller inclination increment to make ATQ and

ATw equal within some specified tolerance.
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Determination of Orbital Eccentricity

The orbital eccentricity must now be adjusted so that the orbit
will rotate the required amount during the planetary stay time, AT.
The circular orbit rotates through the required angles during the time

AT!' = AT = AT
Q w

A simple test for the existence of an elliptical orbit that regresses
the proper amount during the stay time AT is

AT' < AT

Since circular orbits have the fastest regression rates, this inequality
means that the eccentricity can be increased to slow down the speed of
rotation and thereby force AT' to equal AT.

The eccentricity that makes AT' equal to AT can be found quite
readily by the Newton-Raphson technique. The orbital eccentricity is
a real root of a fourth order polynomial found by expressing equation (9)
or (10) in terms of the eccentricity. The derivation of this polynomial
and the solution for orbital eccentricity is as follows.

The rate of secular variation of the node and periapsis vectors
is given by:

—3nJ2R2
QS = cos 1 (9)
2a?(1 - e?)?
-3nJ,.R?
§ = — (g sin?i - 2) (10)
§ 2a2(1 - e2)2

9]

Note that the rate ratio, 55 , i1s determined by the inclination since
: S

the terms involving eccentricity divide out in the ratio. Thus the
eccentricity can be adjusted independently to change the rate without
destroying a particular value of the ratio.

Designate the common factor in both equations by ﬁr' Then

-3nJ2R2
R T - — (14)
T 2a2(1 - e2)2
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and equations (9) and (10) become

Q= Q_ cos i (15)
. _ . 2 . 0.
wy = Qr (2 sin<i - 2) (16)
The mean motion (n) is given by
n = 4 <+ (17)
a‘3

The semimajor axis (a) is
r
a = —B (18)

By substituting for n and a into equation (14) and simplifying,
the following result is obtained:

Q= 3- %\Iu_-Jszr;/zg (1 -e)3/2 (1 +e)2 (19)

r

For a given periapsis radius, the quantity in curly brackets is
constant. Let

¢ = 3‘ %\I”—Jszrp- 7/22 (20)
Then
K=(1-2e)32(1+e)2 (21)
where
ér
K=—% (22)

The problem now is, given K, find e. Squaring both sides of (21)
and simplifying the result is

K2(1 + e)% = (1 - e)3 (23)
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Expanding (23) in a binomial expansion and collecting common powers
of e, the following result is obtained:
LK2 +
R CLSIE I D

(6K2 - 3) o2 (LK2 + 3) LK -1

: s 22 3) -0 (ab)
K2 K2 K2 K2
Equation (24) will have a real root on the interval
0 <e <1
provided
AT' < AT
Equation (24) is of the form
= Wb 4 3 2 =
£f(x) = x* + a,x* +ax® +ax+a =0 (25)
The derivative with respect to x 1is
- 3 2 =
fr{x) = Ux” + Balx + 2a.x + a, = 0 (26)
The constant coefficients are
2 h
) G L = 6K2-3
1 K2 2 K2
? (27)
a_hK2+3 a_K?—-l
3 K2 b K2 )
The constant K is easily evaluated
® [ 4
£ Q Ae /AT
K = r= 5 - = Q " (28)
C C cos i C cos i

where C is evaluated in equation (2 ).
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The parking orbit eccentricity is found by iteration using
equations (25) and (26) in the following formula:

f(en)
n+l n - f'(en) (29)

Since e 1s between O© and 1, the formula quickly converges when an
initial estimate of e = 0.5 is used.

A Fortran Computer Program Using this Technique

The technique discussed has been programmed. The program is
essentially a search routine. It accepts two V_ vectors, one for the
approach trajectory and one for the departure trajectory. The V_ vectors
define a range of permissable values of inclination for the approach and
departure trajectories. Any parking orbit whose inclination falls within
this range could conceivably be used if e¢nough fuel is available to make
the required plane changes.

The program scans through all the possible inclinations and then
uses the above discussed interpolation scheme and a Newton-Raphson
technique to determine the characteristics of those parking orbits which
match the approach and departure trajectories.

In general, more than one feasible orbit exists. The program
outputs all orbits which match the arrival and departure trajectories.
The output consists of the Keplerian elements of the parking orbit,
the entry hyperbola, and the exit hyperbola.

Coordinate systems.- The input velocity vectors are referenced to
a heliocentric ecliptic coordinate system. This is a right-handed
rectangular Cartesian system with the positive x-axis pointed toward
the vernal equinox, the positive y-axis in the ecliptic plane 90° East
cf x, and z normal to the ecliptic plane and positive to the North.

The internal coordinate system of the program (and the system to
which the output data are referenced) is a planetocentric equatorial
system, which is a right-handed rectangular Cartesian system. The
X-y plane is defined by the planet's equatorial plane. The positive
x-axXis points toward the ascending node of the Sun's apparent path
around the planet, the positive y-axis is 90° East of x, and the
positive z-axis points North along the planet's spin axis. For Earth
this is the reference system of celestial coordinates, and the trans-
formation is well known. The transformation to these coordinates for
Mars is discussed in detail in reference 5.
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A PRELIMINARY ANALYSIS OF A 1975 MARS ORBITAL MISSION

Procedure

A preliminary stay time analysis of a 1975 Mars orbital mission
has been made. The interplanetary trajectories and the vV vectors
at Mars were calculated by an independent trajectory analysis program
(ref. 2). The launch date (September 5, 1975) and outbound trip time
(303 days) were held constant, and the planet stay times were varied
in 50-day increments from 300 to 500 days. The total trip time
including the planet stay time varied between 950 and 1170 days so that
between one third and one half of the total trip time was spent in
parking orbit about the planet.

The V_ vectors were used as input data to the parking orbit analysis
program. The characteristics of the parking orbit and entry and exit
hyperbolas that matched the V_ vectors were then determined for each

planet stay time. The AV cost to brake into and inject out of these
parking orbits was then calculated.

Results
The results of this analysis are presented in table I. For each
stay time except the 300-day case, there were three possible orbits

that satisfied the conditions outlined on page 3.

The AV cost to deboost into the parking orbit (AV
injection AV (AV

IN) and the

OUT) are plotted versus stay time in figure 3. The

lower three curves show the cost to deboost into the parking orbit as
a function of stay time. Each curve presents the variation in deboost
AV for one particular parking orbit. For a given inclination, these
curves will display a downward trend due to variation of the orbital
eccentricity with stay time. (The eccentricity variation is discussed
below and shown in figure 6.)

The upper three '"bucket" shaped curves in figure 3 show the variation
in injection AV as a function of stay time. Each curve presents the
variation of injection AV for one particular parking robit. The shape

of the curve is determined by the variation in magnitude of the departure
V_ vector.

Two important conclusions regarding a 3-year, 1975 Mars orbital
mission can be ipnferred from table I.

1. The total AV committment for parking orbit operations is least
for a planetary stay time near U400 days (nearly one third of the total
mission time).
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2. There exists a parking orbit for which the total AV committment
for parking orbit operations is less than 6000 fps. In fact, the parking
orbit has an inclination of 145° and an eccentricity of 0.76 (table I).

Why did the parking orbit with the 145° inclination have the least
AV requirement and not the one with a 72° or 100° inclination? Part
of the answer lies in figure 4, which shows how the parking orbit node
and periapsis rotation rates vary with inclination. The figure indicates
that (1) near-equatorial orbits experience faster rotational rates
than near-polar orbits, and (2) their speed of rotation is less dependent
on eccentricity. Thus, if we consider two parking orbits with identical
node and periapsis rotation rates - one a near-polar orbit and the
other a near-equatorial orbit, the near-equatorial orbit will have the
larger eccentricity, and will, therefore, require locwer deboost and
injection AV's. The argument is supported in figure 5(a) which shows
that the orbit with the 145° inclination has the highest eccentricity.

Actually, this behavior is not as simple as the argument indicates.
Two geometric factors complicate the situation:

1. The declination of the departure asymptote varies with time
in inertial space.

2. The angles through which the parking orbit must rotate during
the planned stay time vary with inclination.

Both factors affect the characteristics of the parking orbit. The
required orbital inclination slowly changes with planned stay time due
to variation in declination of the departure V_ vector. Since both
inclination and eccentricity mutually affect the orbit rotation rates,
the eccentricity also varies to compensate for the change in rate due
to inclination. This behavior is illustrated in figure 5(a) and 5(b)
where the required orbital inclinatiorn and eccentricity are plotted
versus planetary stay time.

The situation would be greatly simplified if the departure asymptote
did not vary with time. In this case the required orbital inclination
would remain fixed over the interval of stay times; and the parking
orbit eccentricity would be a simple function of planet stay time.
The variation of eccentricity with stay time for this simplified
situation is shown in figure 6. The figure was generated based on the
V_ geometry for the 400-day stay time. The eccentricity was varied to
find out the shortest time required for the orbit to rotate through

the required angles (AaQ and Awp). The figure indicates that a circular

orbit would rotate through the required angles during a stay time as
low as 20 days (for the 145° inclination orbit). However, a plane
change would be required for planetary stay times shorter than 20 days.
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Figure 6 also explains why the variation in deboost AV (

AVIN)

shown in figure 3 is so small. The curves are nearly flat on the
interval from 300 to 500 days, and the required orbital eccentricity
slowly increases with increasing planet stay time; thus the deboost

AV requirement to get into these orbits is slowly decreasing. On the
interval from 20 to 100 days, the required orbital eccentricity

increases steeply with increasing stay time. Thus for short stay times

we would expect the deboost AV curves of figure 3 to be more steeply
down-sloping. Also since near-circular orbits require higher deboost

and injection AV's than more elliptical orbits, the deboost and injections
AV's will be displaced upwards in figure 3 for the shorter stay times.

EVALUATION OF FUEL COSTS FOR ORBITAL ALIGNMENT

Because this technique requires no maneuvers in orbit does not
mean it is free of fuel costs for orbital alignment. The fuel costs
for orbit orientation occur at the planet's sphere of influence and
parking orbit periapsis.

The AV required at the planet's sphere of influence, however, is
very small compared to other AV costs. The AV is required to achieve
a given periapsis altitude and inclination of the hyperbolic arrival
trajectory. (This penalty is analogous to the cost of pushing a
precariously balanced marble off the apex of a right circular cone
where the targeting condition is a point at the base of the cone.)

The primary fuel cost is pald at periapsis of the parking orbit.
Two major burns occur at this point:

1. The deboost into the parking orbit.
2. The injection onto the escape hyperbola.

The eccentricity of the parking orbit is the fundamental quantity
which governs the expense of these maneuvers. The fuel cost for either
maneuver is greatest for a circular parking orbit. Assuming periapsis
altitude remains fixed, the cost diminishes as orbital eccentricity
increases. To save the most fuel, it is therefore advantageous to have
the parking orbit eccentricity as large as possible.

Orbital eccentricity also governs the speed of rotation of the
orbital node and periapsis position vectors. Circular orbits experience
the fastest regression rates. For an orbital mission in which a large
plane change must be realized during a short stay time, it may be
necessary to adopt a near-circular parking orbit. In that case, less
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AV may be required to deboost into a high eccentricity ellipse and
make a parking orbit plane change.

The important conclusions regarding use of this technique
therefore rest with the tradeoff on orbital eccentriecity. Obviously
any technique which requires a smaller orbital eccentricity will have
greater fuel costs than this technique.

For long planetary stay times (300 to 500 days), this technique
appears to be feasible for orbital eccentricities as high as 0.7. Short
planetary stay times (20 to 50 days) are being investigated and will
be the subject of a future internal note.



TABLE I.- MARS PARKING ORBIT CHARACTERISTICS FOR A
3-YEAR, 1975 MISSION

Stay time,| Inclination, |Eccentricity, | AV AV Peri i

days deg ’ e, ’ I ouT? ve lo?‘ﬁ?f 1%1),
nd fps fps fps

300 70.0 0.58 3029 8580 1h 249

112.0 0.53 3256 8876 14 021

350 73.0 0.61 2894 5171 1k 383

111.0 0.56 3119 5396 14 158

141.0 0.70 2498 W75 14 780

400 72.0 0.62 2850 4280 14 428

110.5 0.59 2981 NIRRT 1} 293

141.0 0.76 2239 3669 15 038

450 72.0 0.66 2673 5111 1k 605

109.5 0.58 3029 5467 1h 249

k1.0 0.78 2154 4592 15 124

500 75.0 0.72 2411 5918 14 867

110.0 0.60 2939 6446 14 339

135.0 0.7k 2325 5832 14 953
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mission

1975 Mars orbital

September 5, 1975

Outbound trip time: 303 days
:~950 days

Launch date
Total trip time

70°
110°

i Parking orbit inclination

14 000
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10 000

sdj

8 000

,

AV
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‘K3190f9A BY|9Q
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400 450 500 550
Stay time, T', days

350

300

Figure 3.~ Velocity to brake into and inject from a regressing parking orbit.
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